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The problem of nonlinear development of Gortler vortices and interaction with 
Tollmien-Schlichting waves is considered within the framework of incompressible 
Navier-Stokes equations which are solved by a Fourier-Chebyshev spectral method. 
It is shown that two-dimensional waves can be excited in the flow modulated by 
Gortler vortices. Owing to nonlinear effects, this interaction further leads to the 
development of oblique waves with spanwise wavelength equal to the Gortler vortex 
wavelength. Interaction is also considered of oblique waves with spanwise 
wavelength twice that of Gortler vortices. 

1. Introduction 
The subject of laminar/ turbulent transition is of fundamental and practical 

importance in fluid mechanics. An in-depth knowledge of the transition mechanism 
is needed not only for boundary/shear layer control (e.g. delay of transition or 
mixing enhancement), but also for understanding of turbulence. Depending on the 
state of the boundary layer, various instability mechanisms such as Tollmien- 
Schlichting (TS), crossflow and Gortler vortices may be operative. Which 
instability modes are actually excited in a boundary layer depends a great deal upon 
the particular ‘forcing ’ present. This is the classical ‘receptivity ’ problem. The 
presence of a finite-amplitude disturbance in a boundary layer would also lead to the 
excitation of disturbance modes which may otherwise be damped or weakly unstable 
according to  linear stability theory. Examples of such interactions are the possible 
excitation of TS instability in the presence of Gortler vortices on a concave wall, 
fundamental or subharmonic secondary instability in a flat-plate boundary layer or 
the excitation of TS instability in the presence of crossflow vortices on a swept wing. 

Consider a boundary-layer flow on a concavely curved plate. Here, counter- 
rotating steady Gortler vortices form owing to centrifugal instability. If the 
Reynolds number is high enough, TS instability may also be present. Nonlinear 
development of Gortler vortices and Gortler/TS interaction is a problem of both 
fundamental and practical importance. The interaction may take place in three 
different situations : (if when Gortler vortices are of finite amplitude and TS waves are 
infinitesimally small; (ii) when TS waves are of finite amplitude and Gortler vortices 
are weak ; (iii) when both Gortler vortices and TS waves are of finite amplitude so 
that they interact nonlinearly. 

Nayfeh (1981), using multiple-scale analysis for two-dimensional boundary layers, 
showed that a finite-amplitude Gortler vortex could interact with two oblique TS 
waves of spanwise wavelength twice that of the Gortler vortex. The resulting growth 
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rates were found to  be many times larger than the linear theory growth rate of t>hc 
TS wave without the Gortler vortex. Furthermore, these exponential growth rates 
were predicted to increase with increasing amplitude of the vortex. Since the 
amplitude of the vortex increases exponentially, there is essentially a ‘double 
exponential growth ’ of the disturbances in the boundary layer. Similar results were 
also obtained by Srivastava & Dallmann (1987). The concept of ‘doublc exponential 
growth ’ has also been suggested by Herbert & Morkovin (1979) for the interaction 
of finite-amplitude TS waves with streamwise vortices and by Floryan & Saric (1980) 
for the streamwise vortices interacting with Gortler vortices. Recently Hall & Smith 
(1988) have also studied Giirtler/TS interaction. Such interactions are crucially 
dependent on the amplitude of the primary mode. The present study is an attempt 
to determine the amplitudes of the primary instability for these interactions to take 
place. Other types of interactions including those which involve oblique TS waves 
with spanwise wavelength <?qua1 to  the Gortler vortex wavelength are also discussed. 

Jn this work, the wave-interaction problem in two-dimensional boundary layers on 
a concave surface is studied numerically. The three-dimensional incompressible 
Navier-Stokes equations are solved by a Pourier-Chebyshev spectral method with 
two periodic and one non-periodic direction. Even though the boundary layer grows 
spatially, the works of Wray & Hussaini (1984), Zang & Hussaini (1985) and Spalart 
(1984) have shown that ternporal solution of the Navier-Stokes equations with 
periodic boundary conditions in the streamwise direction is able to  capture the 
qualitative features of the transition process on a flat plate quite adequately. It is 
assumed that such will be the case in the boundary layer that  is considered here. 
Though the method is applicable to  all the regimes of interaction listed above, results 
are presented only for the case where Gortler vortices are finite-amplitude but T6 
waves have relatively small amplitude. 

2. Governing equations and numerical approach 
We consider the problem of laminar/ turbulent transition in two- and three- 

dimensional boundary layers. The governing Navier-Stokes equations for an 
incompressible fluid are 

U,+ U * V U =  -VP+VV’U+F, (2.1) 

v.u=o,  (2-2) 

where U =  (u,w,w) is the velocity vector, p the pressure, and v the kinematic 
viscosity. The term F is a forcing term. No-slip boundary conditions at the solid wall 
( z  = 0) are imposed, i.e. 

U(Z, y, 0,  t )  = 0. (2.3) 

In  the free stream, it is reasonable to require that 

W+U, as z - t o o .  (2.4) 

Equations (2.1 )-(2.4) are solved by a Fourier-Chebyshev spectral method similar 
to  that described by Malik, Zang & Hussaini (1985). Periodicity is assumed in the 2- 
and y-directions. The dependent variables have Fourier-Chebyshev series of the form 

fK,-1 $KKy-l N 

u(x, y, z, t )  = &(t) e2ni(Pzz/Lz) e2ni(k,?/lL ) Tn(v), (2.5) 
k,=-;K, k y = - i K y  12-0 



Interu.ctions between GortEer vodices and ~o l lmie .n -Sch l i ch t i ,~~  waws 185 

where L, and L,  are the periodicity lengths in the x- and y-directions, respectively, and 
T, is the Chcbyshev polynomial of degree n, The normal computational coordinate 
7 is related to 2 through the algebraic transformation 

1+7  

1 +;-7 
z = a  

2a ’ 

b W  

where n is a scaling constant used for proper distribution of points within the 
boundary layer and xw is the location where free-stream asymptotic boundary 
conditions (Malik et al. 1985) are imposed. 

The spatial discretization employs spectral collocation. The collocation points for 
the periodic directions are 

xi=jL,/Kz,  j = O , l ,  ..., K,-1, (2.7) 

ym = mL,/K,, rn = 0,1, ..., K u - l .  (2.8) 

A staggered grid is ernploycd in the normal direction. Velocities are defined at  the 
points 

q = O , l ,  ...) N ,  (2.9) 

and the pressures a t  

VPi$ = cos rp); q = 0,1,  ..., N -  1 (2.10) 

No artificial pressure boundary conditions are therefore needed. The momentum 
equations are imposed a t  the points given by (2.9) and the continuity a t  those given 
by (2.10). 

In the spectral collocatioin method, spatial derivatives of u are obtained by 
differentiating the series expansion coe6cients &(t)  determined by discrete Fourier 
and Chebyshev transform of the grid-point values of u. The temporal discretization 
involves Crank-Nicolson on the pressure gradient and vertical diffusion terms. The 
remaining terms in the momentum equations are handled explicitly by the second- 
order-accurate Adams-Bashforth method. The incompressibility constraint is 
imposed implicitly. The resulting implicit equations are solved iteratively by a 
minimum residual method. The details of the procedure can be found in Malik et al. 
(1985) and Canuto et al. (1988). 

2.1. Flow over a curved wall 
The numerical procedure outlined above is applicable to the study of a transition 
problem in two- and three-dimensional boundary layers where TS, Gortler or 
crossflow instability mechanisms may be operative. Here we describe the application 
of the method to the flow over a concavely curved plate where both Gortler vortices 
and TS waves might exist. Extension to three-dimensional boundary layers is 
straightforward. 

Consider an incompressible flow with free-stream velocity U, along a mildly 
curved wall with constant curvature K = l / r  where 1 is a characteristic lengthscale 
and r is the radius of curvature of the wall. If x is the distance along the curved wall, 
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y along the span, and z normal to the wall, then the governing equations (2.1) and 
(2.2) may be represented in body-oriented coordinates as 

ax ’ 
au 

ax [ a Z  
-++u-+v-+w-+yuw = -h-+v V%+y--y2u+2yh- (2.11) 
au au au au 
at ax ay aZ 

-+hu-+v-+w-=--+v v v+y- , 
at ax ay a Z  ap ay [ av a v  av av 

-+~u-+v-+w---yu~ = --+v V2w+y--y2w--2yh- 
at ax ay az a Z  [ a Z  ax ’ 
aw aw aw aw 

au av aw 
ax ay aZ 

au] (2.13) 
aw 

h-+-+-+yw = 0, 

(2.12) 

(2.14) 

where 

In (2.11)-(2.14), all velocities are scaled by U,, lengths by 1,  time by l / t Jm,  
pressure by p V , ;  v = 1/R, where R is the Reynolds number. A Gortler number 
can be defined as G = RIK(~.  

According to first-order boundary-layer theory, the above equations reduce to  the 
Blasius flow which provides the basic flow for our study of Gortler/TS interaction 
and transition simulation in a two-dimensional boundary layer. 

2.2. Linear stability theory 
We consider an infinitesimally small disturbance superimposed on the Blasius 

u(x, y, z ,  t )  = U,(z) + ezi(z) ei(az+bv-wt) (2.15) 

under the quasi-parallel flow assumption. Here E is a small parameter, ct and /3 are the 
disturbance wavenumbers in the x- and y-directions respectively and w = w, + iwi is 
complex frequency. The real part o, is the actual disturbance frequency and the 
imaginary part wi is the temporal growth rate. If wi > 0 the disturbance amplitude 
increases ; otherwise, the disturbance decays. 

Linear stability equations may be derived by substituting u(x, y, z,  t )  from (2.15) 
and similar expressions for other dependent variables into the Navier-Stokes 
equations (2.11)-(2.14) and then retaining only terms of O(e) .  The resulting sixth- 
order system of ordinary differential equations describes an eigenvalue problem for 
parameters a, p and w which is solved by a fourth-order-accurate compact difference 
scheme of Malik, Chuang & Hussaini (1982). Depending upon the values of the 
Gortler number G and wavenumbers a, /3, the governing equations yield a solution 
for both Gortler vortices and TS waves. These solutions provide the initial conditions 
for the nonlinear calculations. I n  figures 1 and 2, described below, we provide linear 
results for Gortler and TS waves to emphasize the differences between the two 
instabilities. 

flow. For instance, the streamwise velocity u(x, y, z, t )  may be written as 

2.3. Nonlinear simulations 
Various nonlinear problems may now be formulated. Suppose, we are interested in 
studying the nonlinear development of Gortler vortices. We solve the linear stability 
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Eigenfunct,ions for a Gortler vortex in a Blasiua boundary layer : G = 14, B = 0.3. 

problem for the Blasius boundary layer and find /3 = p,, the growth rate wi and the 
disturbance eigenfunctions 4,, GG,"z6,. These are presented in figure 1.  The plots show 
that the streamwise component uG is an order-of-magnitude larger than the cross- 
stream components $, and 4,. The spanwise component is 90" out of phase with 4, 
and 6,. This allows the steady Gortler vortex problem to be represented as a system 
of real equations. I n  the present case, our complex system of equations automatically 
yields the real solution for the steady Gortler vortex. The structure of 8, and &, is 
such that i t  results in a pair of counter-rotating vortices. There are higher eigenstates 
for the Gortler problem which yield multiple sets of counter-rotating vortices stacked 
on top of each other. How these higher modes would interact with TS mode may be 
of interest. The linear stability theory also yields unsteady Gortler vortices, whose 
interaction with TS waves may be of significance, particularly in the later stages of 
transition. Here, however, we only consider the steady Gortler vortices. Gortler 
vortices found in experiments are usually steady and of first-mode type. In  the 
present study, the steady Gortler vortex is assigned an initial finite amplitude E,. 

Then an initial condition, say for the x-component of velocity, is of the form 

u(x,  y, x ,  0) = U,(z) +eG Re [&(z) eip~Y]. (2.16) 

Equations (2.1 1)-(2.14) are solved with these initial conditions and the solution is 
marched in time. The solution yields the development of the fundamental and 
various harmonics depending upon the number of modes allowed in the simulation 
according to (2.5). In the linear regime, the temporal development is related to the 
spatial development through group velocity transformation (C, = aw/acr) as for TS 
waves. 

The eigenfunctions for a TS wave are presented in figure 2. The eigenfunctions 
are now complex with disturbance peak lying closer to the solid boundary. The 

7 FLM 210 
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FIGURE 2. Eigenfunctions for an oblique TS wave in a Blasius boundary layer 
R = 950, a = 0.103, p = 0.15. (a) Real part, ( b )  imaginary part. 

interaction of a Gortler vortex with two oblique TS waves may be studied by 
choosing the following initial conditions : 

u(z, y, z ,  0) = U,(x) +eG Re [2 iG(z) e'flcy] 

I). (2.17) + eTS{ Re [&( z )  ei(aTsZ+PTsY) ] + Re [ $ ( z )  ~ ~ ( ~ T s Z - P T S Y )  
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Various values of pTs in relation to /IG may be assigned. For example, /ITs = ;pPG 
describes a subharmonic resonance and pTS = pG describes a fundamental resonance. 
Relative magnitudes of eG and cTs describe various regimes of interaction where 
either the Gortler vortex or TS wave is small or when both have large amplitude and 
interact nonlinearly. 

In  the Navier-Stokes solution, the mean streamwise velocity I J  is allowed to 
develop in time according to 

au a2u 

at a22 

_ -  - --+P, U(X, y, 2 , O )  = U&). 

Three different forms for the forcing term F were tried: 

(2.18) 

(2.19) 

F = 0, (2.20) 

(2.21 a) 

(2.21 b )  

where C, is the disturbance group velocity defined above. 
With (2.19), the mean velocity and the boundary-layer thickness does not change 

with time. The second condition (P = 0) alllows the boundary-layer thickness to 
increase and the long-time solution of (2.18) is given by the error function. Wray & 
Hussaini (1984) used this condition for their transition simulation in flat-plate 
boundary layers. The condition (2.21 a )  also allows the boundary-layer thickness to 
increase and is designed to give growth in time similar to the growth in space 
according to (2.21 b ) .  Since the solutions presented below are for short time only, 
all these formulations essentially gave the same results for the development of 
disturbances of different wavenumbers. Therefore, only the results obtained by using 
(2.19) are presented below. 

Use of numerical simulation to study the intermodal interaction may be described 
best by providing the example of subharmonic instability in a flat-plate boundary 
layer. This instability, which is the result of parametric resonance between a two- 
dimensional TS wave and oblique TS waves with streamwise wavelength twice that 
of the fundamental wave, was first theoretically studied by Herbert (1984) using 
Floquet analysis. Here we consider the fundamental wave to have a = 0.2033 and 
prescribe R = 606. An amplitude of 0.01 (i.e. 1 YO) is assigned to the two-dimensional 
TS wave. 

According to Herbert, a strong subharmonic instability of wave numbers ($a, p) 
should develop for a wide range of p, (see figure 9 in Herbert 1984). The present 
calculation is performed by including in the initial conditions two oblique modes 
(&a,/? = k0.16968). Results of the calculation are presented in figure 3. I n  this figure, 
the natural logarithm of the energy history of the modes (a ,  0) and (ka, p) are plotted 
as a function of time. Calculations are carried out to about 3.5 linear time periods of 
the finite-amplitude two-dimensional wave. The solid curves are the linear theory 
results for the corresponding modes. The finite-amplitude two-dimensional wave 
follows its linear growth (wi = 0.7 x curve within the computational domain. 

7-2 
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FIGURE 3. Computed evolution of energies of a two-dimensional TS wave ((a,O) mode) and the 
oblique subharmonic ((;a,P) mode). Tn this calculation, R = 606, a = 0.2033, P = 0.16968. A strong 
secondary subharmonic instability develops. Included in the initial conditions are two oblique 
primary suhharmonics. The solid lines represent linear-theory results. 

The subharmonic (&, /3) follows the linear theory result for the primary subharmonic 
for some time and then diverges from it indicating strong secondary instability. The 
growth rate a t  the onset of this instability is wi x 0.0098 which drops to wi z 0.0071 
towards t,he end of the computation owing to nonlinear effects. This is in good 
agreement with the prediction of Herbert for wi = 0.00824. The subharmonic 
secondary instability has been linked to the squire mode by Herbert (1984). 
However, in order to capture the instability using numerical simulations, we need 
not provide the actual eigenfunctions for the squire mode in the initial conditions. 
In our calculations we have used the eigenfunctions for the primary subharmonic. I n  
another calculation the initial conditions for the (;a, /3) modes were arbitrarily taken 
to be 

i a6 
& = 0, v^ = *2e-2(r-1) , w A = +--. (2.22) 

- p a y  

The results are presented in figure 4. Again the subharmonic secondary instability 
emerges. Most interestingly, both calculations converge towards the same growth 
rate for the subharmonic. Higher harmonics also emerge in these nonlinear 
calculations. In a transition simulation, one would like to assign a small random 
distribution of energy to all the modes, except, of course, the finite-amplitude 
disturbance and let the dominant pattern evolve by itself. Such calculations for a 
flat-plate boundary layer have been done by Spalart (1985). 
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FIGURE 4. Same as for figure 3 except the initial conditions for the subharmonic were those 
given in (2.22). 

3. Results for Gortler/TS interaction 
3.1. Subharmonic instability 

Using the multiple-scale method, Nayfeh (1981) and Srivastava & Dallmann (1987) 
presented results for Gortler/TS interaction in a boundary layer. Their results 
(derived from table 3 of Nayfeh 1981 and figure 5 of Srivastava & Dallmann 1987) 
for R = 950, p = 0.3 and G = 14 are given in figure 5 where the growth rate of the 
excited TS waves (in the presence of a Gortler vortex with 1 YO amplitude) of various 
frequencies is plotted. The growth rate of the excited TS waves are shown to increase 
dramatically in the presence of Gortler vortices. It was shown in Srivastava & 
Dallmann (1987) that the growth rate of the excited wave increases with decreasing 
Gortler number and increasing wavenumber p. The massive destabilization of the TS 
waves in the presence of Gortler vortices (with only 1 YO amplitude) shown in figure 
5 is a bit surprising and of enormous concern to a designer. Here we choose this case 
(R = 950, G = 14, p = 0.3) for a direct numerical simulation. 

The computed growth rate wi for the aforesaid case is 0.0033, which corresponds 
to a spatial growth rate of cr = RwJC, of 4.48 (C, was computed for the Gortler 
vortex to be about 0.7). This is in reasonable agreement with the spatial calculations 
of Ragab & Nayfeh (1981). I n  the nonlinear simulations, the Gortler vortex is 
assigned an initial amplitude of 1 YO. The streamwise wavenumber a was taken to be 
0.103. The complex frequency for the oblique (a, &I) mode is (0.038, 0.00079) and we 
assign to these oblique waves an initial amplitude of 0.1 YO. The calculation is 
performed by using eight Fourier modes in the streamwise direction, 16 modes in the 
spanwise direction and 33 Chebyshev polynomials across the boundary layer. 
Occasional tests of accuracy were made with twice the number of Fourier modes in 
the streamwise and spanwise directions and the growth rate results were essentially 
unaltered. In spectral methods, one can keep an explicit check on resolution by 
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FIQURE 5.  Spatial growth rates of excited oblique TS waves in the presence of a Gortler vortex with 
1 % amplitude (from Nayfeh 1981 and Srivastava & Dallmann 1987) and linear-theory results. As 
we show later. the curve labelled ‘excited TS wave’ is erroneous. 

monitoring the energy content in the higher modes of the fourier-Chebyshev 
expansion. Furthermore, we also checked the results against linear stability theory 
and Herbert’s secondary instability theory. The time evolution of the energy of six 
of the modes is presented in figure 6. The Gortler mode (0,/3) continues to grow 
according to its linear theory growth rate. No strong instability in the (a, +$) mode 
develops, at least within the computational period. The growth of this mode actually 
slows down slightly towards the end of the computational period. Similar growth 
behaviour of the (a, $) mode was observed for other values of /3 a t  eG = 0.01 and up 
to eG = 0.05. The mode that grows the fastest is (0,2/3), i.e. the one with half the 
wavelength of the finite-amplitude Gortler vortex. This seems to agree with the 
observation of Aihara & Koyama (1981) that the ‘. . . characteristic spanwise 
wavelength of importance is shown to be a half-wavelength of Gortler vortices in the 
present experiment ’. Apparently, it is the nonlinear distortion of the Gortler vortex 
that is observed in Aihara & Koyama (1981). This nonlinear distortion of the finite- 
amplitude Gortler vortex is neglected in Nayfeh’s theory. In our calculation, we also 
tried to ‘simulate’ Floquet theory by zeroing out all higher harmonics after each 
time step. Even this did not result in any change in the growth of the oblique TS 
waves. A careful look a t  the growth rates given in Nayfeh (1981) for the linear 
Gortler vortex and a comparison with Ragab & Nayfeh (1981) indicated that these 
growth rates could have been obtained only when the lengthscale 1 = 1.72(v, x/U,)i 
is used. The lengthscale used in Nayfeh (1981) for the TS problem was I = (urn z/U,)i. 
It was noted by Malik (1986) that this discrepancy in the lengthscales may have been 
the cause for the erroneous growth rates computed by Nayfeh (1981). Indeed, this 
turned out to be the case. Nayfeh & Al-Maaitah (1987) later corrected the 
lengthscales and found that the multiple-scale analysis does not yield any excitation 
of the TS waves when the amplitude of the Gortler vortex is 1 YO. It is still not clear 
why the results of Srivastava & Dallmann (1987) agree with Nayfeh (1981). 
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FIGURE 6. Computed evolution of energies of various modes in the presence of a Gortler vortex 
( (0,B) mode) with 1 %  amplitude in a two-dimensional boundary layer on a concave wall. Two 
oblique TS waves ((a, &;/I) mode) with amplitudes of 0.1 % are included in the initial conditions. 
In this calculation R = 950, G = 14, a = 0.103, p = 0.3. The solid lines represent linear-theory 
results. 

-35 8 

Srivastava & Dallmann also considered combination resonance and showed that it is 
a much more powerful instability mechanism than the subharmonic parametric 
resonance predicted by Nayfeh. They showed that the former mechanism produces 
growth rates which are an order-of-magnitude higher than the growth rates produced 
by the latter mechanism, given in figure 5. However, in view of the disagreement 
between their results and the present simulations of the subharmonic instability, the 
results of Srivastava & Dallmann for the combination resonance should be 
questioned. I n  any case, results presented by Nayfeh (1981) in tables 1-3 and by 
Srivastava & Dallmann (1987) in figures 1, 3 and 5 are erroneous. 

The results for cG = 0.1 for the above test case are presented in figure 7. Again, we 
note that the (a ,  &,8) mode does not grow faster than its linear theory results. So the 
resonance mechanism suggested by Nayfeh (1981) is not operative, a t  least a t  this 
wavenumber and amplitude of the Gortler vortex. Similar calculations using (a ,  +p) 
modes in the initial conditions did not indicate any resonant fundamental secondary 
instability. Later, we will show that the (a,P) mode is excited in the presence of a 
two-dimensional wave ((a,O) mode). Another calculation for the subharmonic 
instability is performed at  this amplitude (eG = 0.1) using G = 12 and pG = 0.15. The 
streamwise wavenumber for the oblique TS wave is now a = 0.18 and R = 950. The 
value of w for this TS wave (a,$) is w = (0.0628, -0.0002). So, this wave decays 
linearly. The results of the numerical simulation are presented in figure 8. Now the 
oblique TS wave is unstable, in qualitative agreement with the results of Nayfeh & 
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FIQURE 7. The effect of a Gortler vortex ( (0 ,p )  mode) with 10% initial amplitude on oblique TS 
waves ((a, ip) mode). I n  this calculation, R = 950, G = 14, a = 0.103, ,4 = 0.3. 
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FIGURE 8. Same as figure 7 except that  G = 12, a = 0.18, p =  0.15. 

Al-Maaitah (1987) using Floquet theory and multiple-scale analysis. However, the 
growth rates are no more than the growth rates of the primary Gortler instability. 
Apparently, the excitation of the subharmonic is more pronounced a t  smaller 
wavenumbers of the Gortler vortex for a given amplitude. This is also in direct 
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contradiction to the results of Srivastava & Dallmann who showed that the growth 
rates of the excited oblique wave increase with wavenumber. In  any case, for some 
values of the parameters /3 and eG, the subhormonic resonance may be realized in the 
Gortler vortex breakdown. Evidently, the Gortler vortex amplitude needed for this to 
happen is in excess of 10%. This appears to be in qualitative agreement with the 
results of Nayfeh & Al-Maaitah (1988) who performed Floquet analysis to  study the 
wave-interaction problem. Their results indicate that the excitation of TS waves is 
very weak at 1 YO amplitude of the Gortler vortex but it begins to become appreciable 
a t  high amplitudes of Gortler vortex. It may be noted that Nayfeh & Al-Maaitah 
only performed an analysis for /3 = 0.154926. Therefore, it is not known what trend 
their present Floquet theory would predict at higher wavenumbers p. As the Gortler 
vortex develops downstream, wavenumber p increases owing to the growth of the 
boundary layer and, since interaction takes place a t  relatively large amplitudes, the 
higher wavenumber regime would be more interesting. Since the normal mode 
approach for Gortler instability becomes questionable a t  low wavenumbers (Hall 
1983) the results for only one value of p equal to  0.154926 does not have general 
validity. Since Nayfeh (1981) earlier had computed the /3 = 0.3 case and wrongly 
shown that the excitation of TS waves was more pronounced a t  this wavenumber, it 
is not clear to us why this wavenumber case was not repeated by Nayfeh & Al- 
Maaitah (1988). 

3.2. Other types of secondary instabilities 
Nonlinear development of Gortler vortices results in inflectional streamwise velocity 
profiles in the upwash region (peak plane) of the Gortler vortex flow. The inflection 
points caused by the presence of low-velocity fluid in the near-wall region of the 
peak planes appear both in the normal distribution u ( z )  and the spanwise distribution 
u(y) (see e.g. Swearingen & Blackwelder 1987). Localized inviscid secondary 
instabilities may be caused by these inflectional profiles. In  the present instance, we 
use our numerical model to investigate possible excitation of two-dimensional (a, 0) 
disturbances in the flow field modulated by the presence of Gortler vortices. 
Calculation is first made for the same Gortler vortex as in the example of figure 8. The 
TS wave now has a = 0.18 and the linear-theory eigenvalue w = (0.0613,0.0009). The 
results are presented in figure 9. The presence of the Gortler vortex causes the growth 
rate of the two-dimensional TS wave to increase above its linear theory value. The 
growth rate of the excited two-dimensional TS wave is comparable with the oblique 
subharmonic instability discussed above. Also shown in the figure are the computed 
growth history of the (a, p) mode. As noted before, this mode does not get excited in 
the absence of the (a, 0) mode. However, now the (a, p) mode attains higher growth 
rates in the presence of the (a, 0) mode. The growth rate of this mode is compared to 
other modes in figure 10 at  time t x 400 (which is equivalent to about 4 periods of 
the two-dimensional mode) along with the corresponding linear-theory results. The 
figure also contains growth-rate results for the (a,ip) mode which is also excited. 

Another calculation is performed a t  G = 14, PG = 0.5 with the same amplitude 
for the Gortler vortex as before (cG = 0.1). The two-dimensional TS wave now has 
a = 0.15 and w = (0.04940, 0.00227). The results are presented in figure 11.  Again, 
the two-dimensional TS wave attains a growth rate much higher than its linear 
value. The (a, p) mode also grows fast owing to nonlinear interaction. The orientation 
11. = tan-'p/a for this mode is 73.3'. The orientation of the (a,P) mode of figure 11 
was 39.8'. So there seems to be a wide range of angles for which the (a,P) mode is 
unstable. In  this example, the two-dimensional TS wave was linearly unstable. 
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FIGURE 9. The effect of a Gortler vortex ((0,p) mode) with 10% initial amplitude on a two- 
dimensional TS wave ((a.0) mode). I n  this calculation, R = 950, C = 12, a = 0.18, p = 0.15. The 
(a.  p) mode grows owing to  nonlinear interaction. The solid lines represent linear-theory results. 
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FIGURE 10. Temporal growth rates of various modes (with a = 0.18) at time t = 400 in the 
presence of a Gortler vortex with /3 = 0.15. 0, Navier-Stokes; 0, linear theory. 

Another calculation is presented in figure 12 where the two-dimensional TS wave 
(a = 0.2) is linearly stable (linear theory o = (0.0693, -0.00115)). As shown in the 
figure, both the (a ,  0) and (a ,  p) modes grow in the nonlinear calculations regardless 
of the fact that the TS mode chosen is linearly stable. This is consistent with the 
results presented in figures 3 and 4 where it was shown that the form of the initial 
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FIGURE 11. Same as figure 9 except that G = 14, a = 0.15, /3 = 0.5. 
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FIGURE 12. Same as figure 11  except that a = 0.2. 

conditions for the excited mode do not play a critical role. As noted previously, the 
first harmonic of the Gortler vortex gains energy faster than any other mode, 
indicating a spectral broadening process. However, the three-dimensionality and 
unsteadiness is caused by the development of (a ,  0 ) ,  (a ,  p) or possibly (a ,  $, p) modes, 
depending upon the initial conditions and flow parameters involved. The computed 
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growth rates of these excited modes, a t  least initially, remain small when compared 
to the growth rate of the Gortler vortex itself. However, the Gortler vortex does 
reach a saturated state (as also noted in the experiments of Swearingen & 
Blackwelder 1987) a t  which time the secondary instability modes will be expected to 
grow much faster and would lead to various kinds of breakdown mechanisms as 
observed by Swearingen & Blackwelder (1987), Bippes (1978) and Aihara & Koyama 
(1981). Calculations indicate that at saturation, the Gortler vortex amplitudes are in 
excess of 20%. We believe that our numerical model would be able to provide 
detailed qualitative information about the development of unsteadiness and eventual 
breakdown ; however, this calculation would require much higher resolution than 
used here, especially in the normal direction, in order to resolve critical layers that 
are present near the edge of the boundary layer. With regard to the computational 
resources required, a calculation on a CRAY-2 computer would take about 1.2 x 
seconds per node per time step. 

4. Concluding remarks 
Direct numerical simulation of wave interactions is useful not only in testing 

theories but also in bringing out new instability mechanisms in boundary layers. In  
this paper, we have presented a numerical model for Gortler/TS interaction which 
may be used to investigate various possible regimes of interactions between Gortler 
vortices and Tollmien-Schlichting waves. In  the numerical examples, we have only 
considered the regime where Gortler vortices have finite amplitude and TS waves 
are relatively small. Even though our model is based upon the parallel-flow 
approximation, it provides the qualitative features of the possible interaction 
mechanisms. Of course, any mechanism that is mainly caused by non-parallel effects 
cannot be treated by our model. What mechanisms might be ruled out because of this 
limitation is open for discussion. Gortler/TS interaction takes place a t  relatively 
large amplitudes of Gortler vortices (as primary instability) and therefore secondary 
instability mechanisms leading to unsteadiness most likely involve nonlinearities, 
and the direct numerical simulation can obviously take account of such non- 
linearities. Finally, we have found that the GortlerlTS interaction results presented 
by Nayfeh (1981) and Srivastava & Dallmann (1987) are erroneous. However, our 
calculations for subharmonic excitation are in qualitative agreement with the 
corrected results of Nayfeh & Al-Maaitah (1988). 

This work was partly supported by NASA Contracts NAS1-18240 (MRM) and 
NAS 1 - 18 107 (MYH) . 
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